Boska cząstka. Jeśli Wszechświat jest odpowiedzią, jak brzmi pytanie? - Dick Teresi, Leon Lederman - ebook

Boska cząstka. Jeśli Wszechświat jest odpowiedzią, jak brzmi pytanie? ebook

Dick Teresi, Leon Lederman

5,0

Opis

4 lipca 2012 r. naukowcy ogłosili odkrycie bozonu Higgsa – tak długo poszukiwanej „boskiej cząstki”, która zdążyła zyskać miano „Świętego Graala fizyki”. Wydarzenie to stało się okazją do od dawna oczekiwanego wznowienia książki o cząstce Higgsa – Boskiej cząstki. 

Boska cząstka to najzabawniejsza książka o fizyce, jaką kiedykolwiek wydano. To błyskotliwa opowieść o poszukiwaniu najdrobniejszych składników materii oraz o roli, jaką odgrywają one w wyjaśnianiu tajemnicy narodzin i ewolucji Wszechświata. „Czytając tę książkę, będziesz śmiał się tak głośno, że nawet nie spostrzeżesz, jak wiele się w tym czasie nauczyłeś” – pisał w recenzji dziennikarz „San Francisco Examiner”.

Trochę historii, trochę autobiografii, trochę polemiki; z garścią uwag rzuconych na marginesie... Lektura Boskiej Cząstki to przyjemność, chociażby ze względu na sposób, w jaki autorzy opisują fascynujący świat i odkrywają jego sekrety. „Nature”

Leon Lederman uczynił dla fizyki cząstek elementarnych tyle, ile Stephen Hawking dla kosmologii... „Dallas Morning News”

Okazuje się, że najbardziej nawet skomplikowane prawa fizyki można wyłożyć w tak atrakcyjny i przystępny sposób, by nawet zakuty humanistyczny łeb mógł tę wiedzę zgłę­bić i zrozumieć.  „Polityka” 

Leon  Lederman – profesor fizyki w Illinois Institute of Technology, członek National Academy of Sciences, były prezes American Association for the Advancement of Sciences, zdobywca wielu wyróżnień, między innymi National Medal of Science (1956), Medal of Franklin Institute (1976), Wolf Prize in Physics (1982), laureat Nagrody Nobla (1988), autor ponad dwustu prac z dziedziny fizyki. 

Disk Teresi – autor i współautor wielu książek popularnonaukowych z zakresu fizyki i technologii, . znanej polskiemu czytelnikowi książki Zapomniane odkrycia (2005), były redaktor naczelny kilku pism („Omni”, „Science Digest”, „Longevity”, „VQ”), laureat nagrody za pisarstwo popularnonaukowe przyznawanej przez American Institute of Physics.

Ebooka przeczytasz w aplikacjach Legimi na:

Androidzie
iOS
czytnikach certyfikowanych
przez Legimi
czytnikach Kindle™
(dla wybranych pakietów)
Windows
10
Windows
Phone

Liczba stron: 688

Odsłuch ebooka (TTS) dostepny w abonamencie „ebooki+audiobooki bez limitu” w aplikacjach Legimi na:

Androidzie
iOS
Oceny
5,0 (3 oceny)
3
0
0
0
0
Więcej informacji
Więcej informacji
Legimi nie weryfikuje, czy opinie pochodzą od konsumentów, którzy nabyli lub czytali/słuchali daną pozycję, ale usuwa fałszywe opinie, jeśli je wykryje.
Sortuj według:
BoJimBo

Nie oderwiesz się od lektury

super
00
Krzy28

Nie oderwiesz się od lektury

Dzieło sztuki wśród książek popularnonaukowych.!!!🙂
00

Popularność




Tytuł oryginału

THE GOD PARTICLE

If the Universe Is the Answer,

What Is the Question?

Copyright © 1993 by Leon Lederman and Dick Teresi

Wydanie drugie, przejrzane i poprawione

Konsultacja naukowa, przypisy

dr Elżbieta Stephan

Projekt okładki

Prószyński Media

Ilustracja na okładce

NASA

Redaktor serii

Adrian Markowski

Korekta

Michał Załuska

ISBN 978-83-8295-446-3

Warszawa 2012

Wydawca

Prószyński Media Sp. z o.o.

02-697 Warszawa, ul. Rzymowskiego 28

www.proszynski.pl

Evanowi i Jaynie

Lubię teorie względności i kwantową,

bo ich nie rozumiem

i przez nie mam wrażenie, jak gdyby przestrzeń

wierciła się ciągle jak niespokojny łabędź,

co nie usiedzi w miejscu i nie pozwala się zmierzyć;

i jak gdyby atom był czymś impulsywnym,

ciągle zmieniającym swe zamiary.

D.H. LAWRENCE

Dramatis personae

Atomos lub a-tom – cząstka wymyślona przez Demokryta. A-tom, niewidoczny i niepodzielny, jest najmniejszym elementem materii. Nie należy go mylić z tak zwanym atomem chemicznym, będącym jedynie najmniejszą porcją każdego pierwiastka (wodoru, węgla, tlenu itd.).

Elektron – pierwszy a-tom, odkryty w 1898 roku. Elektron ma przypuszczalnie, podobnie jak wszystkie pozostałe a-tomy, zerowy promień. Należy do rodziny leptonów.

Kwark – kolejny a-tom. Istnieje sześć rodzajów (tak zwanych zapachów) kwarków. Każdy z sześciu kwarków występuje w trzech kolorach. Tylko dwa rodzaje kwarków: u – górny i d – dolny, istnieją naturalnie w dzisiejszym Wszechświecie.

Neutrino – a-tom należący do rodziny leptonów. Występuje w trzech odmianach. Nie jest cegiełką materii, ale odgrywa kluczową rolę w niektórych reakcjach. Bije wszelkie rekordy w minimalizmie: ma zerowy ładunek, zerowy promień i (wedle wszelkiego prawdopodobieństwa) zerową masę.

Mion i taon – leptony te są znacznie cięższymi kuzynami elektronu.

Foton, grawiton, rodzina W+, W– i Z0 oraz gluony – są to cząstki, ale nie cząstki materii jak kwarki i leptony. Przenoszą oddziaływania: elektromagnetyczne, grawitacyjne oraz jądrowe – słabe i silne. Jak dotąd wykryto wszystkie z nich oprócz grawitonu.

Pustka – nicość. Wymyślona także przez Demokryta. Jest przestrzenią, w której poruszają się a-tomy. Współcześni teoretycy zaśmiecili ją całym mnóstwem wirtualnych cząstek i różnych innych rupieci. Obecnie stosuje się nazwy „próżnia”, a niekiedy „eter” (zob. niżej).

Eter – wymyślony przez Isaaca Newtona, powtórnie wprowadzony do nauki przez Jamesa Clerka Maxwella. Eter to jest to, co wypełnia pustą przestrzeń Wszechświata. Skrytykowana i odrzucona przez Alberta Einsteina, koncepcja eteru obecnie powraca w postaci próżni zaśmieconej teoretycznie istniejącymi cząstkami.

Akcelerator – urządzenie służące do zwiększania energii cząstek. Ponieważ E = mc2, akcelerator sprawia także, że cząstki stają się cięższe.

Eksperymentator – fizyk, który robi doświadczenia.

Teoretyk – fizyk, który nie robi doświadczeń.

Oraz

Boska Cząstka

(znana również jako cząstka Higgsa, bozon Higgsa,

skalarny bozon Higgsa lub, po prostu, higgson albo higgs).

Rozdział 1

Niewidoczna piłka nożna

Nie istnieje nic oprócz atomów i pustej przestrzeni;

wszystko poza tym jest opinią.

Demokryt z Abdery

Na samym początku była próżnia; dziwny rodzaj pustki, nicość niezawierająca przestrzeni, czasu ani materii, żadnego światła ni dźwięku. Lecz prawa przyrody były już gotowe, a owa dziwna pustka kryła w sobie potencjał. Jak ogromny głaz na wierzchołku wyniosłej skały...

Chwileczkę.

Zanim głaz runie, powinienem wyjaśnić, że tak naprawdę nie bardzo wiem, o czym mówię. Wprawdzie każde opowiadanie powinno zaczynać się od początku, ale to jest opowiadanie o Wszechświecie i, niestety, nie mamy żadnych informacji o tym, co się działo na Samym Początku. Zupełnie żadnych, zero. Aż do momentu, kiedy Wszechświat osiągnął dojrzały wiek trylionowej części sekundy, czyli wkrótce po stworzeniu w akcie Wielkiego Wybuchu, nic o nim nie wiemy. Kiedy czytasz lub słyszysz coś na temat narodzin Wszechświata, bądź pewny, drogi Czytelniku, że autor zmyśla. Filozofowie mają prawo snuć domysły, lecz tylko Bóg wie, co się zdarzyło na Samym Początku, i – jak dotąd – skutecznie strzeże swej tajemnicy.

Ale na czym to stanęliśmy? Ach, tak...

Jak ogromny głaz na wierzchołku wyniosłej skały… Równowaga pustki była równie krucha: wystarczyło najlżejsze zaburzenie, aby spowodować zmianę; zmianę, z której narodził się Wszechświat. I stało się. Nicość eksplodowała. W potoku początkowej światłości stworzone zostały przestrzeń i czas.

Z uwolnionej wtedy energii wyłoniła się materia – gęsta plazma cząstek, które przekształcały się z powrotem w promieniowanie i znów stawały się materią. (Tu przynajmniej mamy już do czynienia z kilkoma faktami i spekulatywną teorią). Cząstki zderzały się ze sobą i dawały początek nowym cząstkom. Czas i przestrzeń wrzały i pieniły się, podczas gdy czarne dziury tworzyły się i znikały. Co za widok!

W miarę jak Wszechświat rozszerzał się i stygł, stawał się także coraz rzadszy. Formowały się cząstki i różnicowały oddziaływania. Powstawały protony i neutrony, potem jądra atomowe i atomy oraz wielkie obłoki pyłu, które – wciąż się rozszerzając – zagęszczały się lokalnie to tu, to tam; w ten sposób tworzyły się gwiazdy, galaktyki i planety. Na jednej z planet – na zupełnie zwykłej planecie, krążącej wokół przeciętnej gwiazdy, która jest maleńkim punktem w spiralnym ramieniu typowej galaktyki – wyodrębniły się wyniosłe kontynenty i spienione oceany. W oceanach zachodziły reakcje organiczne, powstały białka i zaczęło się życie. Z prostych organizmów drogą ewolucji powstały rośliny i zwierzęta, aż wreszcie pojawiły się istoty ludzkie.

Ludzie wyróżniali się spośród innych istot żywych głównie tym, że byli ogromnie zainteresowani swoim otoczeniem. Z czasem mutacje doprowadziły do tego, że na Ziemi pojawił się dziwny rodzaj ludzi. Zachowywali się zuchwale. Nie zadowalało ich podziwianie wspaniałości świata. Pytali: „Jak?”. Jak został stworzony Wszechświat? Jak to, z czego jest zrobiony, może być odpowiedzialne za całe niewiarygodne bogactwo naszego świata: gwiazdy, planety, wydry, oceany, rafy koralowe, światło słoneczne, ludzki mózg? Tylko dzięki pracy oraz poświęceniu setek pokoleń mistrzów i uczniów można było znaleźć odpowiedź na pytania stawiane przez mutantów. Wiele odpowiedzi było błędnych czy wręcz żenujących. Na szczęście jednak mutanci nie znali uczucia wstydu. Tych mutantów zwiemy fizykami.

Dziś, po dwóch tysiącach lat roztrząsania tego pytania – w kosmologicznej skali czasu jest to zaledwie mgnienie oka – zaczynamy pojmować całość historii stworzenia. W naszych teleskopach i mikroskopach, w obserwatoriach i w laboratoriach – i na kartkach naszych notatników – zaczynamy dostrzegać zarys pierwotnego piękna i symetrii, które panowały w pierwszych chwilach istnienia Wszechświata. Już prawie je dostrzegamy, choć obraz nie jest jeszcze wyraźny. Czujemy, że coś utrudnia nam widzenie – jakaś nieznana siła, która zamazuje i skrywa wewnętrzną prostotę naszego świata.

JAK DZIAŁA WSZECHŚWIAT?

Książka ta poświęcona jest pewnemu zagadnieniu, które zaprzątało naukę od czasów starożytnych: czym są elementarne cegiełki materii? Grecki filozof Demokryt najmniejszą cząstkę materii nazwał atomos (co dosłownie znaczy „niemożliwy do podzielenia”). Nie chodzi tu o te atomy, o których uczą na lekcjach chemii: wodór, hel, lit i inne, aż do uranu i jeszcze dalej. Wedle dzisiejszych kryteriów (i według kryteriów Demokryta) atomy to duże i niezgrabne twory. Dla fizyka, a i dla chemika także, taki atom to prawdziwy śmietnik pełen mniejszych cząstek: elektronów, protonów i neutronów. Z kolei protony i neutrony są jak gdyby wiaderkami pełnymi jeszcze innych stworków. Dlatego podstawowym składnikiem materii jest a-tom Demokryta, a nie atom nauczyciela chemii.

Materia, którą widzimy dziś wokół siebie, jest złożona. Istnieje około stu chemicznych atomów. Można obliczyć liczbę użytecznych kombinacji tych atomów – jest ona ogromna: miliardy miliardów. Niektóre rodzaje układów atomów, zwane cząsteczkami, natura wykorzystała do budowy planet, słońc, gór, wirusów, gotówki, aspiryny, agentów literackich i innych pożytecznych rzeczy. Ale nie zawsze tak było. W najwcześniejszych momentach, tuż po stworzeniu Wszechświata w Wielkim Wybuchu, nie istniała złożona materia, jaką znamy obecnie. Nie było żadnych jąder, żadnych atomów, niczego, co składałoby się z prostszych składników. A to dlatego, że straszliwa temperatura panująca w nowo narodzonym Wszechświecie nie pozwalała na formowanie się żadnych złożonych obiektów. Jeśli takie powstawały w wyniku zderzeń, natychmiast z powrotem ulegały rozkładowi na najbardziej elementarne składniki. Istniał wtedy zapewne jeden rodzaj cząstek i jedno oddziaływanie (a może nawet jedno zunifikowane cząstko-oddziaływanie) oraz prawa fizyki. W tej pierwotnej jedności tkwiły zarodki złożoności świata, w którym na drodze ewolucji pojawili się ludzie, możliwe, że przede wszystkim po to, by myśleć o tych sprawach. Ten pierwotny Wszechświat może się komuś wydać nudnym, ale dla fizyka cząstek elementarnych – to były czasy! Cóż za prostota i piękno, nawet jeśli tylko mgliście i niedoskonale potrafimy je sobie wyobrazić.

POCZĄTKI NAUKI

Jeszcze przed naszym bohaterem, Demokrytem, żyli inni greccy filozofowie, którzy próbowali wyjaśniać świat za pomocą racjonalnej argumentacji i rygorystycznie oddzielali od niej przesądy, mity i podania o boskich interwencjach. Trzeba przyznać, że przesądy, mity i podania pełniły ważną rolę w próbach znalezienia sobie miejsca w świecie pełnym wzbudzających grozę i najwyraźniej przypadkowych zjawisk. Jednak Grecy byli także pod silnym wrażeniem dającej się zauważyć regularności: powtarzalność dnia i nocy, pór roku, działania ognia, wiatru i wody. Już przed 650 r. p.n.e. w rejonie śródziemnomorskim dysponowano imponującą techniką. Wiedziano, jak dokonywać pomiarów lądu, jak żeglować wedle gwiazd. Znano wyrafinowane procesy metalurgiczne, wkrótce też zgromadzono szczegółową wiedzę dotyczącą położeń gwiazd i planet, która pozwalała na konstruowanie kalendarzy i formułowanie przewidywań. Wytwarzano zgrabne narzędzia oraz delikatne tkaniny, a wyroby ceramiczne miały kunsztowne kształty i zdobienia.

Na zachodnim wybrzeżu regionu zwanego dziś Turcją, w jednej z kolonii greckiego świata, gwarnym Milecie, po raz pierwszy wyrażono przekonanie, że pod powierzchnią widocznej złożoności świat jest prosty i że do prostoty tej można dotrzeć za pomocą logicznego rozumowania. Mniej więcej dwieście lat później Demokryt zaproponował atomos jako klucz, który miał umożliwić dotarcie do prostoty świata. I tak rozpoczęły się poszukiwania.

Fizyka wywodzi się z astronomii, gdyż najdawniejsi filozofowie z podziwem spoglądali na rozgwieżdżone niebo i poszukiwali logicznych modeli, które pozwoliłyby wyjaśnić konfiguracje gwiazd, ruchy planet oraz wschody i zachody Słońca. Z czasem uczeni zaczęli kierować swe zainteresowania ku Ziemi. Obserwacje zachodzących tu zjawisk – jabłek spadających z jabłoni, lotu strzały, rytmicznego ruchu wahadła, kierunków wiatrów i pływów morskich – pozwoliły sformułować zestaw „praw fizyki”.

Rozkwit fizyki przypadł na okres renesansu, kiedy (około roku 1500) stała się oddzielną i wyraźnie określoną dziedziną nauki. Z biegiem czasu i w miarę wzrastania naszych zdolności obserwacyjnych – wynalezienia mikroskopu, teleskopu, pomp próżniowych, zegarów i innych tym podobnych przyrządów – odkrywano coraz więcej zjawisk, które można opisać, skrupulatnie notując liczby, zestawiając tabele i kreśląc wykresy. Wykonując te czynności, można z triumfem zauważyć, że zjawiska przebiegają w zgodzie z matematyką.

Na początku XX wieku atomy stanowiły granicę świata zbadanego przez fizykę, a w latach czterdziestych wysiłki badaczy skupiały się już na jądrze. Stopniowo coraz więcej zjawisk poddawało się obserwacjom. Dzięki wciąż doskonalonym przyrządom mogliśmy jeszcze dokładniej oglądać coraz mniejsze obiekty. Nowe obserwacje i pomiary stanowiły punkt wyjścia dla tworzonych syntez – zwartych podsumowań tego, co udało się zrozumieć. Każdy znaczący krok naprzód powodował powstanie nowej specjalizacji w obrębie fizyki. Niektórzy podążali „redukcjonistyczną” drogą w kierunku dziedzin jądrowych i subjądrowych, podczas gdy inni wybierali ścieżkę wiodącą do pełniejszego zrozumienia atomów (fizyka atomowa), cząsteczek (fizyka molekularna i chemia), jąder atomowych (fizyka jądrowa) i tak dalej.

POCHWYCENIE LEONA

Najpierw fascynowały mnie cząsteczki. W średniej szkole i na początku studiów uwielbiałem chemię, jednak stopniowo moje zainteresowania przesuwały się w kierunku fizyki, która wydawała mi się czystsza od chemii – bezwonna w gruncie rzeczy. Poza tym duży wpyw wywarli na mnie studenci fizyki, którzy byli zabawniejsi od chemików i lepiej grali w koszykówkę. Przewodził naszej grupie Isaac Halpern, obecnie profesor fizyki na Uniwersytecie Stanu Waszyngton. Twierdził, że chodzi oglądać wywieszone oceny wyłącznie po to, by sprawdzić, czy dostał A z czubkiem czy z daszkiem1. Wszyscy go uwielbialiśmy. Potrafił też skakać w dal lepiej niż ktokolwiek z nas.

Zacząłem interesować się zagadnieniami z dziedziny fizyki ze względu na ich niepodważalną logikę i wyraźne konsekwencje eksperymentalne. Gdy byłem na ostatnim roku studiów, mój przyjaciel ze szkoły średniej, Martin Klein, obecnie znakomity badacz spuścizny Einsteina na Uniwersytecie Yale, podczas długiego wieczoru przy wielu piwach wygłosił mi wykład o wyższości fizyki. To przesądziło sprawę. Wstąpiłem do wojska ze stopniem bakałarza w dziedzinie chemii i mocnym postanowieniem zostania fizykiem, o ile uda mi się przeżyć szkolenie i II wojnę światową.

Dla świata fizyki narodziłem się pod koniec 1948 roku, kiedy rozpocząłem studia doktoranckie. Pracowałem przy synchrocyklotronie na Uniwersytecie Columbia. W owym czasie był to akcelerator o największej na świecie mocy. Dwight Eisenhower, prezydent uniwersytetu, przecinając wstęgę, dokonał uroczystej inauguracji urządzenia w czerwcu 1950 roku. Ponieważ przedtem pomogłem mu wygrać wojnę, władze uczelni bardzo mnie ceniły, płacąc mi prawie cztery tysiące dolarów rocznie – za 90 godzin pracy tygodniowo. To były ciężkie czasy.

W latach pięćdziesiątych synchrocyklotron i inne podobne urządzenia przyczyniły się do powstania nowej dyscypliny – fizyki cząstek elementarnych.

Z punktu widzenia osoby postronnej najbardziej charakterystyczną cechą fizyki cząstek elementarnych jest sprzęt – narzędzia, jakimi się posługuje. Ja przyłączyłem się do badań w okresie, gdy właśnie wkraczaliśmy w wiek akceleratorów. Urządzenia te do dziś pełnią najważniejszą rolę w naszej pracy badawczej. Pierwszy „rozbijacz atomów” miał niewiele centymetrów średnicy. Obecnie akceleratorem o największej mocy jest urządzenie znajdujące się w Narodowym Laboratorium Akceleratorowym im. Enrica Fermiego (w tak zwanym Fermilabie) w Batawii, w stanie Illinois. Urządzenie to, zwane tewatronem, ma około 6 km obwodu i rozpędza protony i antyprotony do bezprecedensowych energii. Około roku 2000 skończy się monopol tewatronu na osiąganie najwyższych energii. Obwód nadprzewodzącego superakceleratora (Superconducting SuperCollider, czyli SSC), matki wszystkich akceleratorów, budowanego obecnie w Teksasie będzie miał 86,5 kilometra2.

Czasem zadajemy sobie pytanie, czy nie pobłądziliśmy gdzieś po drodze? Czy sprzęt nie stał się naszą obsesją? Czy fizyka cząstek elementarnych nie przekształciła się w tajemną cybernaukę, w której wielkie zespoły naukowców i megalityczne maszyny zajmują się zjawiskami tak abstrakcyjnymi, że nawet Bóg niezupełnie się w nich orientuje. Łatwiej będzie nam zrozumieć, jak do tego doszło, jeśli prześledzimy Drogę, która doprowadziła nas do obecnego stanu. Droga ta przypuszczalnie bierze swój początek w greckiej kolonii, Milecie, w 650 r. p.n.e., natomiast kończy się w mieście, w którym wszystko jest już zrozumiałe – gdzie najprostsi robotnicy, a nawet i sam burmistrz, wiedzą już, jak działa Wszechświat. Na przestrzeni wieków wielu podążało tą Drogą: Demokryt, Archimedes, Kopernik, Galileusz, Newton, Faraday i inni, aż do Einsteina, Fermiego i licznych współczesnych Wędrowców.

Droga ma odcinki węższe i szersze; prowadzi przez rozległe pustkowia (jak autostrada nr 80 w stanie Nebraska), gdzie indziej robi się kręta i ruchliwa. Odchodzi od niej wiele bocznych ulic o kuszących nazwach: „elektronika”, „chemia”, „radiokomunikacja” czy „fizyka plazmy”. Ci, którzy je wybrali, sprawili, że zupełnie zmienił się sposób życia ludzi na naszej planecie. Ci, którzy pozostali wierni Drodze, przekonali się, że jest ona na całej swej długości jednakowo i wyraźnie oznakowana tablicami, na których widnieje napis: „Jak działa Wszechświat?”. Przy tej właśnie Drodze znajdują się współczesne akceleratory.

Na Drogę tę wstąpiłem w Nowym Jorku, na skrzyżowaniu Broadwayu i 120 Ulicy. W tamtych latach problemy naukowe wydawały się jasno określone i bardzo istotne. Dotyczyły własności tak zwanego silnego oddziaływania jądrowego oraz pewnych przewidzianych przez teoretyków cząstek – mezonów π, znanych także jako piony. Akcelerator Uniwersytetu Columbia był tak zaprojektowany, by w wyniku bombardowania niewinnych tarcz protonami produkować jak najwięcej pionów. Przyrządy, którymi się wówczas posługiwaliśmy, były raczej proste; doktoranci bez trudu mogli pojąć zasady ich działania.

W latach pięćdziesiątych Uniwersytet Columbia był wylęgarnią wielkich talentów fizycznych. Charles Townes miał wkrótce skonstruować laser i otrzymać Nagrodę Nobla. James Rainwater dostał Nagrodę Nobla za model jądra atomowego, a Willis Lamb za zmierzenie maleńkiego przesunięcia linii spektralnych widma wodoru. Noblista Isidor Rabi – na wielu z nas wywarł on ogromny wpływ – kierował zespołem, w którego skład wchodzili między innymi Norman Ramsey i Polykarp Kusch; obaj w swoim czasie mieli zostać laureatami Nagrody Nobla. T.D. Lee uzyskał Nobla za teorię łamania parzystości. Zagęszczenie profesorów namaszczonych szwedzkimi świętymi olejami było jednocześnie podniecające i przygnębiające. Wielu z nas, młodych pracowników naukowych, nosiło w klapie znaczek: „Jeszcze nie”.

Mój osobisty Wielki Wybuch uznania w środowisku naukowym wydarzył się w latach 1959–1962, gdy razem z dwoma kolegami po raz pierwszy zarejestrowaliśmy zderzenia wysokoenergetycznych neutrin. Neutrina to moje ulubione cząstki. Są pozbawione jakichkolwiek własności: nie mają masy (a jeśli, to bardzo niewielką), ładunku elektrycznego ani promienia, a na domiar złego nie podlegają oddziaływaniom silnym. Eufemistycznie bywają określane jako „ulotne”. Neutrino może przeniknąć przez miliony kilometrów litego ołowiu i szansa na to, że weźmie udział w dającym się zarejestrować zderzeniu, jest niewielka.

Nasz eksperyment z 1961 roku stał się kamieniem węgielnym teorii, która w latach siedemdziesiątych została nazwana „modelem standardowym” fizyki cząstek elementarnych. W 1988 roku eksperyment ten został uhonorowany przez Szwedzką Akademię Nauk Nagrodą Nobla. (Wszyscy mnie pytają, dlaczego czekali z tym 27 lat. Sam nie wiem. Rodzinie odpowiadałem żartem, że Akademia ociągała się tak długo, bo nie mogła się zdecydować, które z moich licznych osiągnięć ma wyróżnić). Otrzymanie Nagrody Nobla jest oczywiście wielkim przeżyciem, ale żadną miarą nie da się go porównać z niewiarygodnym podnieceniem, które ogarnęło nas w momencie, gdy uświadomiliśmy sobie, że nasz eksperyment się powiódł.

Dziś fizycy odczuwają te same emocje, które towarzyszyły uczonym na przestrzeni wieków. Ich życie wypełnione jest niepokojem, bólem i trudnościami. Obfituje w napięcia, przypływy beznadziejności i zniechęcenia. Ale od czasu do czasu pojawiają się jasne chwile – radość, śmiech, triumf i uniesienie. Epifanie te przychodzą niespodziewanie. Często pojawiają się wówczas, gdy uda nam się zrozumieć coś nowego i ważnego, coś pięknego, co zostało odkryte przez kogoś innego. Jednak zwykli śmiertelnicy – do których należy większość znanych mi naukowców – przeżywają daleko słodsze chwile, gdy sami odkrywają jakąś nową prawdę o świecie. Zadziwiające, jak często zdarza się to około trzeciej nad ranem, gdy jesteś sam w laboratorium i nagle zdajesz sobie sprawę, że żaden osobnik z pozostałych pięciu miliardów ludzi na Ziemi nie wie tego, co wiesz ty. Taką przynajmniej żywisz nadzieję. Postarasz się, oczywiście, zawiadomić ich o tym jak najszybciej – nazywamy to „publikowaniem wyników”.

Ta książka opowiada o łańcuchu nieskończenie słodkich chwil, które były udziałem uczonych na przestrzeni ostatnich dwu i pół tysiąca lat. Owocem tych przeżyć jest nasza obecna wiedza o Wszechświecie i jego mechanizmach. Ból i rozczarowanie także są częścią tej historii. Często opór i upór samej przyrody utrudniają rozwikłanie zagadki. Jednak uczony nie może liczyć na to, że wspaniałe chwile odkryć wypełnią mu całe życie. Powinien także czerpać radość ze zwykłych, codziennych czynności. Wielką przyjemność sprawia mi na przykład planowanie i konstruowanie urządzeń, które pozwalają dowiedzieć się więcej o tych nadzwyczaj abstrakcyjnych zagadnieniach.

Gdy byłem jeszcze nieopierzonym studentem, razem ze światowej sławy profesorem z Rzymu budowałem licznik cząstek. W pracy tej byłem nowicjuszem, a on starym mistrzem. Wspólnie wytoczyliśmy na tokarce mosiężny walec (było po piątej i wszyscy mechanicy już wyszli). Przylutowaliśmy do niego szklane zaślepki i przez krótką metalową izolowaną rurkę zatopioną w szkle przewlekliśmy złoty drucik. Potem znowu trochę polutowaliśmy. Przez kilka godzin specjalny gaz przepłukiwał nasz licznik, a my zajmowaliśmy się w tym czasie podłączaniem oscyloskopu do drucika, który za pośrednictwem kondensatora podłączyliśmy do źródła prądu o napięciu tysiąca woltów. Mój przyjaciel profesor, nazwijmy go Gilberto, bo tak właśnie miał na imię, spoglądał co chwila na zieloną linię w oscyloskopie i bezbłędnie łamaną angielszczyzną wykładał mi historię i ewolucję liczników cząstek. Nagle zesztywniał i zaczął dziko wykrzykiwać: Mamma mia! Regardo incredibilo! Primo securoso! (Czy coś w tym rodzaju). Krzyczał, wymachiwał rękami, uniósł mnie w górę – mimo że byłem o 20 centymetrów wyższy i o dobre 25 kilogramów cięższy od niego – i wykonał ze mną taniec wokół pracowni.

– Co się stało? – wymamrotałem.

– Mufiletto – odpowiedział. – Jusz liczi. Jusz liczi.

Prawdopodobnie część tej sceny została odegrana tylko na mój użytek, ale Gilberta podnieciło to, że sami – za pomocą własnych rąk, używając naszych oczu i umysłów – skonstruowaliśmy urządzenie, które wykrywało przepływ promieni kosmicznych i rejestrowało je w postaci małych zygzaków na ekranie oscyloskopu. Choć niewątpliwie oglądał to zjawisko tysiące razy, nigdy mu nie spowszedniało. To, że jedna z tych cząstek, które trafiły do pracowni na dziesiątym piętrze budynku stojącego przy rogu Broadwayu i 120 Ulicy, mogła rozpocząć swoją wędrówkę dwno temu w odległej o lata świetlne galaktyce, tylko w części miało swój udział w naszej euforii. Niewyczerpany entuzjazm Gilberta był zaraźliwy.

BIBLIOTEKA MATERII

Kiedy opowiadam o fizyce cząstek elementarnych, często korzystam z uroczej metafory (trochę ją przy tym modyfikuję), której autorem jest Lukrecjusz, rzymski poeta i filozof. Przypuśćmy, że mamy za zadanie odkryć najbardziej elementarne składniki biblioteki. Jak się do tego zabrać? Moglibyśmy najpierw pomyśleć o podziale książek ze względu na rozmaite kategorie tematyczne: historia, nauki ścisłe, biografie itp. A może posortowalibyśmy je wedle rozmiaru: grube, cienkie, duże, małe. Rozważywszy wiele podobnych sposobów klasyfikacji, doszlibyśmy do wniosku, że książki są złożonymi obiektami i że łatwo można dokonać ich dalszego podziału. Zaglądamy więc do środka książki. Szybko rezygnujemy z podziału, którego kryterium stanowiłyby rozdziały, ustępy czy zdania, gdyż one same są złożonymi i nieeleganckimi składnikami. Słowa! Przypominamy sobie w tym momencie, że na stole przy wejściu leży gruby katalog zawierający wszystkie słowa występujące w bibliotece – słownik. Przestrzegając określonych reguł postępowania, zwanych gramatyką, możemy używać słów ze słownika, by zrekonstruować wszystkie książki znajdujące się w bibliotece. W każdej z nich te same słowa są używane i dopasowywane do siebie na różne sposoby. Ale słów jest tak wiele! Głębszy namysł doprowadziłby nas do liter, bo przecież słowa z nich się składają. No, wreszcie znaleźliśmy! Trzydzieści trzy litery pozwalają na stworzenie dziesiątków tysięcy słów, z których można złożyć miliony (miliardy?) książek. Musimy teraz wprowadzić dodatkowy zestaw reguł – ortografię – by ograniczyć ilość możliwych kombinacji liter. Gdyby nie wtrącił się w tym miejscu młodociany krytyk, moglibyśmy nawet próbować przedwcześnie opublikować nasze odkrycie. Młody krytyk powiedziałby, niewątpliwie wielce z siebie zadowolony: „Nie potrzebujesz aż tylu liter, dziadku, zero i jeden w zupełności wystarczą”. Dziś dzieci są już od kołyski otoczone cyfrowymi zabawkami i algorytmy komputerowe, zamieniające zera i jedynki na litery alfabetu, nie sprawiają im kłopotu. Jeśli jesteś na to za stary, drogi Czytelniku, to – być może – jesteś dość stary, by pamiętać alfabet Morse’a, złożony z kropek i kresek. Tak czy owak, mamy teraz następujący układ: zera i jedynki (albo kropki i kreski) wraz ze stosownym kodem, pozwalającym na utworzenie 33 liter, ortografię dla łączenia ich w słowa należące do słownika, gramatykę, by słowa układać w zdania, ustępy, rozdziały i wreszcie książki. A książki składają się na bibliotekę.

Jeśli nie ma już powodu poszukiwać głębszej struktury zera i jedynki, to znaczy, że odkryliśmy pierwotne, a-tomowe składniki biblioteki. W tym niedoskonałym porównaniu biblioteka przedstawia Wszechświat: gramatyka, ortografia i algorytm to siły przyrody, a zero i jeden to tak zwane kwarki i leptony, czyli nasi obecni kandydaci do miana demokrytejskich a-tomów. Wszystkie te składniki są, oczywiście, niewidoczne.

KWARKI I PAPIEŻ

Słuchaczka otwartego wykładu była nieustępliwa. „Czy kiedykolwiek widział pan jakiś atom?” – nalegała. Pytanie to, choć irytujące, jest w pełni zrozumiałe dla kogoś, kto zżył się z obiektywną realnością atomów. Bez trudu potrafię sobie wyobrazić ich wewnętrzną strukturę. Mogę przywołać obraz rozmytej chmury „obecności” elektronu, otaczającej maleńką kropeczkę jądra, które przyciąga do siebie ów mglisty obłok elektronowy. Te myślowe obrazy nie wyglądają jednakowo u różnych uczonych, ponieważ konstruują je na własny użytek na podstawie równań matematycznych. Takie matematyczne recepty nie są szczególnie pomocne, jeśli chodzi o zaspokojenie naszej zwykłej, ludzkiej potrzeby stworzenia sobie poglądowego wyobrażenia. Ale mimo to możemy „zobaczyć” atomy, protony, a nawet kwarki.

Próby odpowiedzi na podobne pytania zawsze zaczynam od określenia znaczenia słowa „widzieć”. Czy „widzisz” tę stronę, jeśli nosisz okulary? A gdy patrzysz na mikrofilm? Albo na kserokopię (okradając mnie przy tym z honorarium)? Gdy patrzysz na tekst na ekranie komputera? I wreszcie zdesperowany pytam: „Czy widziała pani kiedykolwiek papieża?”

Odpowiedź zazwyczaj brzmi: „Oczywiście, widziałam go w tele­wizji”. Czyżby? Wszystko, co ta pani widziała, to fotony emitowane przez luminofor, pokrywający wewnętrzną powierzchnię ekranu, bombardowaną wiązką elektronów. Dowody na istnienie atomu czy kwarka, jakimi dysponuję, są co najmniej równie dobre. Jakie dowody? Ślady cząstek w komorze pęcherzykowej. W akceleratorze znajdującym się w Fermilabie „odłamki” ze zderzeń protonów z antyprotonami są elektronicznie przechwytywane przez trzypiętrowy detektor wart 60 milionów dolarów. Tu „dowody” i „obraz” zbierane są przez dziesiątki tysięcy czujników wytwarzających impuls elektryczny, gdy przelatuje obok nich cząstka. Wszystkie te impulsy przekazywane są setkami tysięcy przewodów do elektronicznych urządzeń przetwarzających dane. Wreszcie na zwojach taśmy magnetycznej powstaje zapis zakodowany w postaci zer i jedynek. Na taśmach tych zarejestrowane są gwałtowne zderzenia protonów z antyprotonami, w których wyniku może powstać aż do siedemdziesięciu cząstek odlatujących w różne rejony detektora.

Nauka, a zwłaszcza fizyka cząstek elementarnych, nabiera zaufania do własnych wniosków, gdy możliwe jest powtórzenie wyników, które do nich doprowadziły. To znaczy, jeśli dane pochodzące z eksperymentu przeprowadzonego w Kalifornii są zgodne z danymi otrzymanymi z akceleratora innego typu, znajdującego się w Genewie. Także w sam eksperyment wbudowuje się sprawdziany i testy mające zapewnić, że urządzenie funkcjonuje tak, jak zaplanowano. Taką pewność można osiągnąć w wyniku długiego i skomplikowanego procesu, w rezultacie badań prowadzonych od dziesięcioleci.

A jednak fizyka cząstek elementarnych przerasta wyobraźnię wielu ludzi. Nieustępliwa słuchaczka wykładu nie jest odosobniona w swym zdumieniu, że oto cała banda uczonych ugania się za maleńkimi, niewidocznymi obiektami. Spróbujmy zatem uciec się do kolejnej metafory...

NIEWIDZIALNA PIŁKA

Wyobraźmy sobie rasę inteligentnych mieszkańców planety Twilo. Wyglądają mniej więcej tak jak my, mówią podobnie do nas. Robią wszystko tak jak ludzie, z jedną tylko niewielką różnicą. Mają pewną szczególną wadę wzroku. Nie dostrzegają biało-czarnych obiektów. Nie widzą na przykład zebry ani koszulek sędziów na meczach hokejowych, ani piłki do gry w piłkę nożną. Pragnę tu zaznaczyć, że nie jest to jakaś niezwykła usterka. Ziemianie są jeszcze dziwniejsi. My mamy dwa dosłownie ślepe punkty mieszczące się w centrum pola widzenia. Nie widzimy tych dziur tylko dlatego, że mózg nauczył się ekstrapolować informacje pochodzące z całego pola widzenia: „zgaduje”, co powinno być w tym miejscu, i w ten sposób zapełnia brakujące fragmenty. Ludzie mkną autostradą z prędkością 160 km/h, dokonują chirurgicznych operacji mózgu, żonglują płonącymi pochodniami, chociaż część tego, co widzą, to – może i trafne – ale przecież tylko przypuszczenie.

Załóżmy więc, że na Ziemię przylatuje delegacja Twiloan z misją pokojową. Aby zapoznać ich z naszą kulturą, pokazujemy im między innymi jedno z najbardziej popularnych na naszej planecie wydarzeń: finałowy mecz mistrzostw świata w piłce nożnej. Naturalnie, nie zdajemy sobie sprawy z tego, że nasi goście nie widzą biało-czarnej piłki. Siedzą zatem na trybunach, a ich twarze mają uprzejmy, acz nieco skonsternowany wyraz. Oglądają, jak gromada ludzi w krótkich spodenkach biega po boisku w tę i z powrotem, wymachując bez sensu nogami, wpadając na siebie i nierzadko się wywracając. Co jakiś czas jeden z nich dmucha w gwizdek. Czasami któryś z graczy biegnie do linii bocznej boiska i unosi obie ręce nad głowę, inni zaś mu się przyglądają. A już zupełnie rzadko bramkarz z niewyjaśnionych przyczyn wywraca się na ziemię, zgromadzeni widzowie okazują wielką radość i czasem przyznaje się punkt jednej z drużyn.

Przez jakieś piętnaście minut Twiloanie siedzą zupełnie skonsternowani, potem dla zabicia czasu próbują zrozumieć zasady gry, która się przed nimi toczy. Niektórzy zajmują się klasyfikacją obserwowanych zdarzeń. Dedukują – częściowo na podstawie ubiorów graczy – że na boisku są dwa zespoły. Rejestrują ruchy graczy i odkrywają, że każdy z nich porusza się w określonym rejonie boiska. Stwierdzają, że różni gracze wykonują różne rodzaje ruchów. By nieco uporządkować swoje poszukiwania, Twiloanie, podobnie jak ludzie w analogicznej sytuacji, nadają nazwy poszczególnym pozycjom zajmowanym przez graczy. Następnie te pozycje kategoryzują i porównują, po czym w ogromnej tabeli zestawiają wszystkie odkryte cechy każdej z pozycji. Gdy Twiloanie odkrywają, że mają do czynienia z pewną symetrią: każdej pozycji w zespole A odpowiada kontrpozycja w zespole B, dochodzi do poważnego przełomu w ich rozważaniach.

Na dwie minuty przed końcem meczu Twiloanie mają tuziny wykresów, setki tabel i opisów oraz nieprzeliczone mnóstwo skomplikowanych reguł rządzących meczami piłki nożnej. I choć reguły te na swój ograniczony sposób mogą być poprawne, to żadna z nich nie ujmuje istoty gry. I wtedy właśnie pewien twiloański żółtodziób, siedzący dotąd cicho, mówi nieśmiało: „Przypuśćmy, że istnieje niewidoczna piłka”.

– Co takiego? – pytają starsi Twiloanie.

Podczas gdy starsi obserwowali to, co zdawało się wiązać z istotą gry – ruchy piłkarzy i oznaczenia boiska – żółtodziób wypatrywał rzadkich zdarzeń. I udało mu się: na moment przed tym, jak sędzia przyznawał punkt jednej z drużyn, i na ułamek sekundy przed wybuchem dzikiej radości na trybunach, młody Twiloanin dostrzegł trwające przez krótki moment wybrzuszenie siatki bramki. W czasie meczu piłki nożnej zazwyczaj nie pada wiele goli, toteż można zaobserwować niewiele takich wybrzuszeń, a każde z nich trwa tylko przez moment. Mimo to żółtodziobowi udało się dostrzec, że mają one półkolisty kształt. Stąd właśnie wzięła się jego szaleńcza konkluzja, że mecz piłki nożnej wymaga istnienia niewidzialnej (przynajmniej dla Twiloan) piłki.

Reszta delegacji wysłuchuje tej teorii i choć dowody empiryczne są niewystarczające, po dłuższej dyskusji przyznają, że młodzian może mieć rację. Starszy dyplomata w grupie – jak się okazuje fizyk – stwierdza, że rzadko występujące zdarzenia wnoszą czasem znacznie więcej niż tysiąc powszednich. Ale ostateczny i niepodważalny argument sprowadza się do tego, że piłka po prostu musi być. Przyjęcie, że istnieje piłka, której z niewiadomych przyczyn nie można zobaczyć, powoduje, że nagle wszystko zaczyna się układać w logiczną całość. Gra nabiera sensu. Mało tego, wszystkie teorie, wykresy, diagramy i zestawienia sporządzone w ciągu tego popołudnia pozostają ważne. Piłka po prostu nadaje regułom sens.

Ta rozbudowana metafora ma zastosowanie dla wielu zagadek fizycznych, a szczególnie pasuje do fizyki cząstek elementarnych. Nie możemy zrozumieć reguł (praw przyrody), nie znając obiektów (piłka), a bez wiary w logiczny zestaw reguł nigdy nie zdołalibyśmy wydedukować istnienia wszystkich cząstek.

PIRAMIDA NAUK

Mówimy tu o nauce i o fizyce, więc zanim ruszymy dalej, spróbujmy uściślić parę terminów. Kim jest fizyk i jak to, czym się zajmuje, ma się do wielkiego schematu nauk?

Istnieje wyraźna hierarchia dyscyplin naukowych, choć nie jest to uszeregowanie ze względu na wartość społeczną czy nawet wymagania intelektualne. Frederick Turner, humanista z Uniwersytetu Stanu Teksas, wyraził tę myśl nieco bardziej elokwentnie. Istnieje, jak mówi, piramida nauk. U jej podstawy znajduje się matematyka. Nie dlatego, że jest bardziej abstrakcyjna czy elegancka od innych, ale z tego powodu, że nie potrzebuje żadnych innych dziedzin i z nich nie korzysta. Natomiast fizyka, następna warstwa piramidy, jest uzależniona od matematyki. Wyżej tkwi chemia, która opiera się na osiągnięciach fizyki. W tym, trzeba przyznać, uproszczonym schemacie fizyka nie zajmuje się prawami rządzącymi chemią. Chemicy na przykład badają, w jaki sposób atomy łączą się w cząsteczki i jak te ostatnie się zachowują, gdy znajdą się blisko siebie. Oddziaływania między atomami są skomplikowane, ale ostatecznie sprowadzają się do praw przyciągania i odpychania między elektrycznie naładowanymi cząstkami, czyli do fizyki. Dalej mamy biologię, która czerpie z osiągnięć chemii i fizyki. Granice między wyższymi piętrami piramidy robią się coraz bardziej rozmyte i nieokreślone. Gdy dochodzimy do fizjologii, medycyny i psychologii, pierwotna hierarchia ulega rozmyciu. Na pograniczach nauk znajdują się dziedziny pośrednie: fizyka matematyczna, chemia fizyczna, biofizyka. Astronomię muszę jakoś wcisnąć do fizyki i nie mam pojęcia, co zrobić z geofizyką czy neurofizjologią. Stare powiedzonko pozwala następująco określić piramidę nauki: fizycy odpowiadają tylko przed matematykami, a matematycy – tylko przed Bogiem (choć pewnie nie byłoby łatwo znaleźć aż tak pokornego matematyka).

EKSPERYMENTATORZY I TEORETYCY: FARMERZY, ŚWINIE I TRUFLE

Wszystkich fizyków zajmujących się cząstkami elementarnymi możemy podzielić na teoretyków i eksperymentatorów, zwanych także doświadczalnikami. Ja należę do tych ostatnich. Cała fizyka rozwija się dzięki współpracy i wzajemnemu oddziaływaniu tych dwóch grup. W tym odwiecznym miłosno-nienawistnym związku między teorią a eksperymentem trwa swego rodzaju rywalizacja. Ile ważnych odkryć eksperymentalnych zostało przewidzianych przez teorię? Ile zdarzyło się niespodzianek? Na przykład istnienie dodatnio naładowanego elektronu – pozytonu – zostało przewidziane przez teorię, podobnie jak piony, antyprotony i neutrina. Z kolei mion, taon i ypsilon stanowiły dla fizyków niespodziankę. Na podstawie bardziej dogłębnej analizy dochodzimy do wniosku, że wynik tego śmiesznego współzawodnictwa jest z grubsza remisowy, ale któż by to liczył...

Eksperyment oznacza obserwację i pomiar. Wymaga stworzenia specjalnych warunków, zapewniających dokonanie najbardziej owocnych obserwacji i precyzyjnych pomiarów. Starożytni Grecy i współcześni astronomowie mieli ten sam wspólny problem: brak wpływu na zjawiska, które obserwują. Dawni Grecy nie mogli albo nie chcieli tego robić. Zupełnie satysfakcjonowało ich prowadzenie obserwacji. Astronomowie natomiast zapewne byliby szczęśliwi, gdyby mogli rąbnąć jedną gwiazdą o drugą albo, jeszcze lepiej, zderzyć ze sobą dwie galaktyki. Niestety, nie mają jeszcze takich możliwości i na razie muszą się zadowolić doskonaleniem metod obserwacji. Ale my mamy mnóstwo sposobów obserwowania własności cząstek.

Dzięki akceleratorom możemy zaprojektować eksperymenty mające na celu znalezienie nowych cząstek. Możemy sterować cząstkami tak, by padały na jądra atomowe, i odczytywać pojawiające się w następstwie zderzeń odchylenia ich torów w ten sam sposób, w jaki specjaliści od kultury mykeńskiej rozszyfrowują pismo linearne – jeśli tylko zdołamy złamać kod. Produkujemy cząstki, a potem je obserwujemy, by zobaczyć, jakie mają własności.

Istnienie nowej cząstki można uznać za przewidziane wtedy, gdy wynika ono z syntezy dostępnych danych dokonanej przez jakiegoś bystrego teoretyka. Najczęściej okazuje się, że nowa cząstka nie istnieje i uszczerbek ponosi ta konkretna teoria. Czy odejdzie w niepamięć, czy też nie, zależy głównie od odporności i wytrwałości teoretyka. Rzecz w tym, że wykonuje się dwa rodzaje eksperymentów: takie, które mają dostarczyć danych potwierdzających teorię, i takie, które mają badać nowe, nieznane obszary. Oczywiście, zazwyczaj najwięcej zabawy jest z obalaniem teorii. Jak to kiedyś napisał Thomas Huxley: „Wielka tragedia nauki – piękna hipoteza ginie uśmiercona przez brzydki fakt”. Dobre teorie wyjaśniają to, co już jest wiadome, i przewidują rezultaty przyszłych eksperymentów. Wzajemne oddziaływanie teorii i eksperymentu to jedna z wielu radości, jakich dostarcza fizyka cząstek elementarnych.

Niektórzy z wybitnych eksperymentatorów – na przykład Galileusz, Kirchhoff, Faraday, Ampe`re, Hertz, Thomsonowie (J.J. i G P.) oraz Rutherford – byli także wcale kompetentnymi teoretykami. Ale eksperymentator-teoretyk to ginący gatunek. W naszych czasach chlubnym wyjątkiem był Enrico Fermi. I.I. Rabi wyraził kiedyś swą troskę z powodu pogłębiającej się przepaści między specjalizacjami w fizyce, mówiąc, że europejscy doświadczalnicy nie potrafią dodać słupka liczb, a teoretycy nie są w stanie zasznurować sobie butów. Obecnie mamy więc dwie grupy fizyków, którym przyświeca wspólny cel – zrozumienie Wszechświata – ale różniące się znacznie światopoglądem, umiejętnościami i stylem pracy. Teoretycy późno przychodzą do pracy, uczęszczają na wyczerpujące sympozja gdzieś na wyspach greckich lub alpejskich szczytach, biorą prawdziwe urlopy, znacznie częściej przychodzą do domu na tyle wcześnie, by jeszcze zdążyć wynieść śmieci. Mają tendencję do zamartwiania się bezsennością. Podobno pewien teoretyk skarżył się lekarzowi: „Doktorze, proszę mi pomóc! Śpię dobrze całą noc, rankiem jest nie najgorzej, ale po południu nie mogę zmrużyć oka”. Takie zachowanie dało początek niesprawiedliwej charakterystyce, zawartej w książce Thorsteina Veblena Teoria klasy próżniaczej3.

Doświadczalnicy nie przychodzą późno do pracy – oni po prostu nie zdążyli pójść do domu. W okresie intensywnej pracy laboratoryjnej świat zewnętrzny przestaje dla nich istnieć i bez reszty oddają się badaniom. Sypiają wtedy, gdy mają godzinę czasu, by zwinąć się w kłębek gdzieś na podłodze koło akceleratora. Teoretyk może przeżyć całe życie, nie doznając intelektualnych wyzwań stojących przed eksperymentatorem, nie doświadczając żadnych wzruszeń i niebezpieczeństw: dźwigu przenoszącego nad głową dziesięciotonowy ładunek, migających czaszek i piszczeli, napisów: „Uwaga! Promieniowanie!”. Jedyne prawdziwe niebezpieczeństwo, jakie zagraża teoretykowi podczas pracy, wiąże się z tym, że może się on dźgnąć ołówkiem, kiedy atakuje robala wypełzającego z obliczeń. Moja postawa wobec teoretyków to mieszanina zazdrości i strachu, lecz także szacunku i tkliwości. Teoretycy są autorami wszystkich najpopularniejszych książek o fizyce: Heinz Pagels, Frank Wilczek, Stephen Hawking, Richard Feynman i inni. Zresztą, czemuż by nie? Mają przecież tyle wolnego czasu... Teoretycy bywają aroganccy. Podczas mych rządów w Fermilabie uroczyście ostrzegałem naszą grupę teoretyków, by nie zachowywali się arogancko. Przynajmniej jeden z nich poważnie potraktował moje słowa. Nigdy nie zapomnę przypadkiem usłyszanej modlitwy unoszącej się z jego gabinetu: „Boże, proszę, przebacz mi mój grzech arogancji. Przez arogancję rozumiem...”.

Teoretycy, podobnie jak wielu innych naukowców, bywają dziko, czasem absurdalnie przejęci rywalizacją. Inni z kolei są pełni wewnętrznego spokoju; rozgrywki, w które angażują się zwykli śmiertelnicy, wyraźnie ich nie dotyczą. Enrico Fermi jest tego klasycznym przykładem. Ten wielki włoski fizyk nigdy nie dał poznać po sobie, że rywalizacja ma dla niego jakiekolwiek znaczenie. Podczas gdy przeciętny fizyk powiedziałby: „My zrobiliśmy to pierwsi”, Fermi chciał tylko poznać szczegóły. Jednak kiedyś na plaży na Long Island, niedaleko laboratorium w Brookhaven, pokazałem mu, jak potrafię modelować realistyczne posągi z wilgotnego piasku. Natychmiast zaproponował, byśmy urządzili zawody, kto zrobi piękniejszy akt leżący. (Odmawiam podania rezultatów. Ocena zależy od tego, czy jest się zwolennikiem śródziemnomorskiej szkoły rzeźbiarskiej czy szkoły z Pelham Bay4).

Pewnego razu, gdy uczestniczyłem w jakiejś konferencji, spotkałem Fermiego w kolejce po obiad. Będąc pod ogromnym wrażeniem obecności wielkiego człowieka, zapytałem go, co sądzi o przedstawionych właśnie danych dotyczących cząstki K-zero-dwa. Przyglądał mi się przez chwilę, a potem rzekł: „Młody człowieku, gdybym potrafił zapamiętać te wszystkie nazwy, zostałbym botanikiem”. Wielu fizyków powtarzało tę historyjkę, ale to mnie się ona przydarzyła. Teoretycy bywają pełnymi ciepła i entuzjazmu istotami, z którymi eksperymentatorzy (my, prości hydraulicy i elektrycy) uwielbiają prowadzić konwersacje i od nich się uczyć. Miałem wielkie szczęście wieść długie rozmowy z niektórymi wybitnymi teoretykami naszych czasów – z Richardem Feynmanem, z jego kolegą z California Institute of Technology (czyli Caltech) Murrayem Gell-Mannem, z arcyteksańczykiem Stevenem Weinbergiem i moim rywalem żartownisiem Shellym Glashowem. James Bjorken, Martinus Veltman, Mary Gaillard i T.D. Lee to inni wielcy, z którymi miałem przyjemność przebywać, uczyć się od nich i wspólnie z nimi się wygłupiać. Znaczna część moich eksperymentów została zainspirowana przez artykuły tych uczonych i rozmowy, które z nimi odbyłem. Zdarzają się także znacznie mniej przyjemni w obejściu teoretycy. Ich geniusz zmącony jest dziwnym brakiem poczucia bezpieczeństwa. Na ich widok chce się zawołać, tak jak Salieri w filmie Amadeusz: „Dlaczego, Boże, zamknąłeś tak znakomitego kompozytora w ciele kretyna?”.

Teoretycy zazwyczaj osiągają szczytową formę w bardzo młodym wieku; ich soki twórcze, jak się zdaje, tryskają bardzo wcześnie i zaczynają wysychać po piętnastym roku życia. Zapewne muszą wiedzieć tyle, ile trzeba; w młodym wieku nie mają jeszcze zbędnego balastu intelektualnego.

Niewątpliwie teoretykom niesłusznie przypisuje się część zasług za dokonanie pewnych odkryć. Sekwencję „teoretyk, eksperymentator, odkrycie” porównywano czasem do sekwencji „farmer, świnia, trufle”. Farmer prowadzi świnię w okolice, gdzie, być może, rosną trufle. Świnia wytrwale ich szuka, wreszcie znajduje, a gdy zamierza je pożreć, farmer zabiera je dla siebie.

CI, KTÓRZY NIE DOSYPIALI

W następnych rozdziałach zajmę się historią i przyszłością materii, widzianymi oczyma odkrywców, podkreślając przy tym – nie ponad miarę, mam nadzieję – rolę eksperymentatorów. Wyobrazimy sobie Galileusza wspinającego się na szczyt krzywej wieży w Pizie i spuszczającego na drewnianą platformę dwa różne ciężarki, aby sprawdzić, czy słychać jedno, czy dwa uderzenia. Pomyślimy o Fermim, który wraz ze swymi współpracownikami doprowadził do pierwszej samopodtrzymującej się jądrowej reakcji łańcuchowej pod płytą boiska stadionu uniwersyteckiego w Chicago.

Kiedy mówię o bólu i trudnościach, w które obfituje życie naukowca, mam na myśli coś więcej niż tylko niepokoje egzystencjalne. Kościół potępił prace Galileusza. Madame Curie życiem przypłaciła swe odkrycia – stała się ofiarą białaczki wywołanej przez promieniowanie. Zbyt wielu z nas cierpi na kataraktę, a żaden nie wysypia się należycie. Większość z tego, co wiemy o Wszechświecie, wiemy dzięki facetom (i paniom), którzy nie dosypiali.

Osiągnięcia teoretyków, oczywiście, także są częścią historii poszukiwań a-tomu. Pomagają nam przetrwać to, co Steven Weinberg nazwał „ciemnymi okresami, które rozdzielają eksperymentalne przełomy” i doprowadzają „niemal niepostrzeżenie do zmiany dotychczasowych przekonań”. Słynna książka Weinberga, Pierwsze trzy minuty, to jeden z lepszych, choć obecnie już nieco przestarzały popularnonaukowy opis narodzin Wszechświata w Wielkim Wybuchu. (Zawsze uważałem, że dzieło to sprzedawało się tak znakomicie, gdyż ludzie brali je za poradnik życia seksualnego). W mojej książce będę kładł nacisk na kluczowe pomiary dotyczące atomu, ale nie sposób mówić o danych, nie zahaczając o teorię. Jakie znaczenie mają te wszystkie pomiary?

RATUNKU, MATEMATYKA!

Będziemy musieli porozmawiać o matematyce. Nawet eksperymentator nie może przejść przez życie bez znajomości kilku równań i liczb. Nie możemy zupełnie uciec od matematyki, bo byłoby to tak, jakby antropolog nie chciał studiować języka ludności, którą opisuje, albo jakby badacz twórczości Szekspira nie nauczył się angielskiego.

Matematyka jest tak ściśle wpleciona w tkankę nauki – zwłaszcza fizyki – że wykluczenie jej równałoby się pozbawieniu nauki części jej piękna, zwięzłości sformułowań i rytualnej szaty. Na poziomie praktycznym matematyka pomaga wyjaśnić, jak przebiega rozwój idei, jak działają urządzenia, jak wszystko to razem składa się na jedną całość. Spotykasz jakąś liczbę tu, potem tę samą liczbę gdzieś indziej – kto wie, może są jakoś ze sobą powiązane.

Ale nie trać ducha, drogi Czytelniku. Nie zamierzam dokonywać obliczeń i na końcowym egzaminie też nie będzie żadnych zadań matematycznych. Podczas wykładu, jaki prowadziłem dla humanistów na Uniwersytecie w Chicago (nosił on tytuł Mechanika kwantowa dla poetów), omijałem problem, wskazując na matematykę i mówiąc o niej, ale, broń Boże, nie dokonując w obecności studentów żadnych obliczeń. Ale i tak przekonałem się, że abstrakcyjne symbole na tablicy automatycznie stymulują organ wydzielający soki, które nadają oczom szklisty wyraz. Jeśli na przykład napisałem x = vt (czytaj iks równa się fau razy te), studentom zapierało dech. I nie chodziło tylko o to, że te genialne dzieci rodziców płacących czesne w wysokości dwudziestu tysięcy dolarów rocznie nie są w stanie poradzić sobie z x = vt. Podaj im tylko liczby do podstawienia za x oraz t i poproś o rozwiązanie równania ze względu na v, a 48 procent rozwiąże równanie poprawnie, 15 procent po zasięgnięciu porady prawnika odmówi podania odpowiedzi, a 5 procent odkrzyknie: „Obecny!”. (Tak, wiem, że to w sumie nie daje 100 procent, ale w końcu jestem przecież doświadczalnikiem, a nie teoretykiem. Poza tym, takie głupie pomyłki wykładowcy poprawiają studentom samopoczucie). Studentów zbija z tropu sama świadomość, że mam zamiar mówić o matematyce. Jest ona dla nich czymś nowym i wywołuje najwyższy niepokój. Toteż, by odzyskać szacunek i życzliwość swoich studentów, czym prędzej przechodzę do bardziej znanego im i bezpiecznego zagadnienia.

Wyobraźmy sobie Marsjanina, który przygląda się temu diagramowi i próbuje go zrozumieć. Łzy mu trysną z pępka! Natomiast przeciętny kibic futbolu amerykańskiego, który nie skończył nawet szkoły średniej, zawoła: „Toż to słynny atak na linię bramki drużyny Czerwonoskórych z Waszyngtonu”. Czyżby zatem ten schemat zagrywki był prostszy niż x = vt? W gruncie rzeczy jest tak samo abstrakcyjny, a z pewnością znacznie bardziej umowny. Równanie x = vt można zastosować wszędzie, w całym Wszechświecie, natomiast ten manewr Czerwonoskórych może pomógłby im zdobyć punkty w Detroit czy Buffallo, ale nigdy podczas gry przeciw Niedźwiedziom.

Dlatego myśląc o równaniach, musimy pamiętać o tym, że mają one realne znaczenie, podobnie jak schematy rozgrywek futbolowych – choć są zbyt skomplikowane i nieeleganckie – mają realne znaczenie na boisku. Tak naprawdę, od zdolności manipulowania równaniem x = vt ważniejsze jest, by je odczytać jako stwierdzenie, mówiące coś o Wszechświecie, w którym żyjemy. Zrozumieć x = vt, to osiągnąć moc. Będziesz mógł, Czytelniku, przepowiadać przyszłość i odczytywać przeszłość. Cóż więc ono znaczy?

x mówi nam, gdzie się coś znajduje. Tym czymś może być Harry sunący w swym porsche po autostradzie albo elektron wypadający z akceleratora. Gdy x = 16, oznacza to, że Harry albo elektron znajdują się w odległości 16 jednostek miary od miejsca, oznaczonego przez nas jako zero. v mówi nam, jak prędko Harry (czy elektron) się porusza. Harry może mknąć po autostradzie z prędkością 120 km/h, a elektron może się wlec z prędkością 1 000 000 m/s. t określa czas, jaki minął od chwili, gdy ktoś zawołał „start!”. Możemy teraz przewidzieć, gdzie się znajdzie to nasze coś w dowolnym momencie: czy t = 3 sekundy, czy 16 godzin, czy 100 000 lat. Możemy także określić, gdzie nasze coś było w chwili t = –7 sekund (7 sekund przed t = 0) albo w chwili t = –1 000 000 lat. Innymi słowy, jeśli Harry wyrusza sprzed twojego domu i jedzie dokładnie w kierunku wschodnim z prędkością 130 km/h, to oczywiście po godzinie od startu będzie się znajdował 130 km na wschód od ciebie. I na odwrót, zakładając, że jego prędkość zawsze wynosi v i że v jest znane, można także obliczyć, gdzie Harry był godzinę wcześniej. Założenie dotyczące stałości v jest bardzo istotne, bo jeśli na przykład Harry lubi wypić, to mógł już godzinę wcześniej zatrzymać się w barze.

Richard Feynman w inny sposób przedstawiał subtelność tego równania. Według jego wersji, policjant zatrzymuje panią jadącą samochodem, podchodzi do niej i mówi: „Czy pani wie, że jechała pani z prędkością 120 km na godzinę?”. Na co ona: „Godzinę? Niech pan nie będzie śmieszny, wyruszyłam z domu zaledwie przed kwadransem!”. Feynmanowi wydawało się, że wymyślił humorystyczne wprowadzenie do rachunku różniczkowego. Jakież było jego zdziwienie, gdy oskarżono go o dyskryminację kobiet. Dlatego ja nie opowiadam tego dowcipu.

Celem naszej małej wycieczki do krainy matematyki było przekonanie się, że równania mają rozwiązania i że te rozwiązania mogą być porównywane z „rzeczywistym światem” pomiarów i obserwacji. Jeśli konfrontacja taka wypadnie pomyślnie, wzrasta nasze zaufanie do „prawa”, z którego skorzystaliśmy. Czasem jednak okazuje się, że rozwiązanie nie zgadza się z wynikami pomiarów i obserwacji. Wtedy, po odpowiednim sprawdzeniu i skontrolowaniu, „prawo” ląduje na śmietniku historii. Od czasu do czasu zdarza się, że rozwiązania równań wyrażających prawa przyrody przybierają całkiem nieoczekiwaną i dziwaczną postać, przez co zdają się podawać w wątpliwość całą teorię. Jeśli kolejne obserwacje wykazują, że teoria jest trafna, radujemy się. Jednak niezależnie od losów poszczególnych teorii mamy pewność, że ogólne prawdy o Wszechświecie, a także funkcjonowanie elektrycznego układu rezonansowego czy drgania stalowej belki budowlanej, dają się wyrazić w języku matematyki.

WSZECHŚWIAT ISTNIEJE DOPIERO OD 1018 SEKUND

Jeszcze jedna uwaga w sprawie liczb. Przedmiot naszych rozważań często zmusza nas do przeskakiwania ze świata bardzo małych obiektów do świata olbrzymich ciał, dlatego też będziemy mieli do czynienia zarówno z bardzo maleńkimi, jak i bardzo wielkimi liczbami. Najczęściej będę je podawał w przyjętej w nauce notacji. Na przykład zamiast pisać jeden milion jako 1 000 000, przedstawię tę liczbę w postaci 106, co oznacza dziesięć podniesione do szóstej potęgi, czyli jeden z sześcioma zerami; w przybliżeniu odpowiada to wyrażonemu w dolarach kosztowi funkcjonowania federalnego rządu amerykańskiego przez 20 sekund. Wielkie liczby, które nie zaczynają się od 1, także można zapisywać w podobny sposób. Na przykład 5 500 000 przedstawiamy jako 5,5 x 106. Jeśli zaś chodzi o maleńkie liczby, to po prostu przed wykładnik potęgi wstawiamy minus. Jedną milionową (1/1 000 000) zapisuje się tak: 10–6, co oznacza, że jeden znajduje się na szóstym miejscu po przecinku: 0,000001.

Ważne jest, by zdać sobie sprawę z rzędu wielkości tych liczb. Jedną z wad notacji liczb stosowanej w naukach ścisłych jest to, że ukrywa ona ich prawdziwy ogrom (albo znikomość). Zakres spotykanych w nauce odcinków czasowych jest oszołamiający. 10–1 sekundy to mgnienie oka, 10–6 sekundy to czas życia mionu, 10–23 sekundy to czas potrzebny fotonowi, cząstce światła, na przejście przez jądro atomowe. Trzeba pamiętać o tym, że wzrastające potęgi dziesięciu bardzo szybko zwiększają liczbę. Tak więc 107 sekund to trochę więcej niż cztery miesiące, a 109 sekund to już trzydzieści lat. Wiek Wszechświata określa się na 1018 sekund – tyle czasu upłynęło od Wielkiego Wybuchu. Fizycy mierzą ten wiek w sekundach – tyle że w bardzo wielu.

Czas nie jest jedyną wielkością, której zakres rozciąga się od niewyobrażalnie małego do niesłychanie wielkiego. Najmniejsza odległość, jaką potrafimy dziś zmierzyć to 10–17 cm. Jest to droga, jaką przebywa cząstka, zwana Z0, zanim zniknie z naszego świata. Teoretycy mają czasem do czynienia z jeszcze mniejszymi strukturami przestrzennymi, gdy na przykład mówią o superstrunach – należących do modnej ostatnio, ale bardzo abstrakcyjnej i hipotetycznej teorii cząstek elementarnych. Twierdzą mianowicie, że rozmiar strun wynosi 10–35 cm – to naprawdę bardzo mało. Na przeciwległym krańcu skali jest promień Wszechświata: nieco powyżej 1028 cm.

OPOWIEŚĆ O DWÓCH CZĄSTKACH I OSTATECZNEJ KOSZULCE

Gdy miałem dziesięć lat, zachorowałem na odrę. Aby mnie rozweselić, ojciec kupił mi wydrukowaną dużą czcionką książkę Alberta Einsteina i Leopolda Infelda, zatytułowaną Ewolucja fizyki. Nigdy nie zapomnę początku tej książki; autorzy mówili w nim o powieściach detektywistycznych i o tym, że w każdej z nich jest zagadka, trop i detektyw. Detektyw rozwiązuje zagadkę dzięki wskazówkom naprowadzającym go na trop.

W naszej opowieści mamy dwie zagadki do rozwiązania. Obie przejawiają się w postaci cząstek. Pierwsza z nich to poszukiwany od dawna a-tom, niewidoczna, niepodzielna cząstka materii, której istnienie po raz pierwszy postulował Demokryt. A-tom należy do sedna podstawowych pytań stawianych przez fizykę cząstek elementarnych. Przez 2500 lat zmagaliśmy się z tą zagadką. Dysponujemy tysiącami wskazówek, z których każdą odkrywano w pocie czoła. W pierwszych rozdziałach tej książki będziemy śledzić, jak nasi poprzednicy trudzili się nad złożeniem tej układanki. Ze zdumieniem spostrzeżemy, że wiele „nowoczesnych” idei formułowano już w XVI i XVII wieku, a nawet na parę stuleci przed Chrystusem. Na zakończenie powrócimy do teraźniejszości, poszukując rozwiązania drugiej, może nawet trudniejszej zagadki. Dotyczy ona cząstki, która, moim zdaniem, dyryguje kosmiczną symfonią. Podczas lektury tej książki zauważysz, drogi Czytelniku, pewne pokrewieństwo łączące szesnastowiecznego matematyka, który spuszczał ciężarki z wieży w Pizie, ze współczesnym fizykiem, odmrażającym sobie palce w zimnej szopie na smaganej wichrem prerii podczas sprawdzania danych płynących z wartego pół miliarda dolarów akceleratora ukrytego pod zamarzniętą ziemią. Obaj zadawali sobie te same pytania: Jaka jest podstawowa struktura materii? Jak działa Wszechświat?

Gdy dorastałem w Bronksie, uwielbiałem obserwować mego brata, który godzinami bawił się chemikaliami. Był geniuszem. Wyręczałem go we wszystkich domowych obowiązkach, byle tylko pozwolił mi przyglądać się swoim eksperymentom. Teraz mój brat jest biznesmenem. Sprzedaje różne dziwne rzeczy, takie jak poduszki, które piszczą, kiedy się na nich siada, tablice rejestracyjne i koszulki z zabawnymi napisami. Te ostatnie pozwalają ludziom wyrazić swój światopogląd w krótkim stwierdzeniu, mieszczącym się na piersi. Cel nauki jest nie mniej szczytny: mam ambicję dożyć chwili, gdy całą fizykę będzie można zredukować do wzoru tak prostego i eleganckiego, że bez trudu zmieści się na koszulce.

W ciągu stuleci poszukiwań takiej ostatecznej koszulki poczyniliśmy znaczne postępy. Na przykład Newton odkrył grawitację, siłę, która pozwala wyjaśnić zadziwiająco szeroki wachlarz zjawisk: pływy morskie, spadanie jabłka, ruchy planet, formowanie się galaktyk. Napis na newtonowskiej koszulce brzmi: F = ma. Później Michael Faraday i James Clerk Maxwell rozwiązali zagadkę widma elektromagnetycznego. Stwierdzili, że elektryczność, magnetyzm, światło słoneczne, fale radiowe i promienie Roentgena są przejawami tej samej siły. W każdej przyzwoitej księgarni uniwersyteckiej można znaleźć koszulkę ozdobioną równaniami Maxwella. Dziś, wiele cząstek później, dysponujemy już modelem standardowym, który redukuje całą rzeczywistość do około tuzina cząstek i czterech rodzajów oddziaływania. Model standardowy stanowi syntezę wszystkich danych uzyskanych za pomocą wszystkich akceleratorów, począwszy od krzywej wieży w Pizie. Porządkuje on cząstki, zwane kwarkami i leptonami (po sześć z każdego rodzaju), w eleganckiej tabeli. Cały model standardowy można zmieścić na koszulce, choć musiałaby być dość gęsto zadrukowana. Jest to prostota zdobyta z wielkim trudem przez zastępy fizyków podążających tą samą Drogą. Jednak elegancja modelu standardowego jest tylko pozorna. Zadziwiająco dokładnie opisuje on niektóre zjawiska, ale jednocześnie jest niepełny i wewnętrznie niespójny. Nawet na koszulce rozmiaru XL nie zmieściłyby się wszystkie – nawet bardzo zwięźle ujęte – niejasne punkty tego modelu.

Co lub kto stoi nam na drodze, utrudniając poszukiwania doskonałej koszulki? Wracamy tu do naszej drugiej zagadki. Zanim zakończymy dzieło rozpoczęte przez starożytnych Greków, musimy dopuścić taką możliwość, że ktoś rozsiewa fałszywe poszlaki, aby nas zdezorientować. Czasem, jak w powieści szpiegowskiej Johna Le Carré, eksperymentator musi zastawić pułapkę, ażeby w ten sposób doprowadzić do zdemaskowania winnego.

TAJEMNICZY PAN HIGGS

Fizycy pracują obecnie nad zastawieniem takiej właśnie pułapki. Budujemy kołowy tunel o obwodzie około 86 km, mający pomieścić podwójny układ próżniowych rur nadprzewodzącego superakceleratora (SSC), w którym zamierzamy pochwycić naszego złoczyńcę.

A jakiż to złoczyńca! Największy złoczyńca wszech czasów! Wierzymy, że istnieje jakaś posępna obecność, przepełniająca cały Wszechświat, która uniemożliwia nam zrozumienie prawdziwej natury materii. Jak gdyby ktoś lub coś chciało nam przeszkodzić w zdobyciu ostatecznej wiedzy. Niewidzialna bariera, która nas od niej oddziela, zwana bywa polem Higgsa. Jego lodowe macki sięgają do każdego zakątka Wszechświata, a jego naukowe i filozoficzne implikacje wywołują u fizyków gęsią skórkę. Pole Higgsa wykonuje swoje czarnoksięskie sztuczki za pomocą – czegóż by innego – cząstki. Zwiemy ją bozonem Higgsa. Bozon Higgsa jest głównym powodem, dla którego budujemy w Teksasie nadprzewodzący superakcelerator. Albowiem tylko on będzie dysponował energią niezbędną do wyprodukowania i wykrycia bozonu Higgsa – tak w każdym razie sądzimy. Ów bozon ma tak wielkie znaczenie dla stanu dzisiejszej fizyki, jest tak kluczowy dla naszego rozumienia struktury materii i tak nieuchwytny, że nazwałem go Boską Cząstką. Dlaczego? Z dwóch powodów. Po pierwsze, wydawca nie zgodziłby się na tytuł Piekielna Cząstka, choć możliwe, że to byłaby nawet trafniejsza nazwa, biorąc pod uwagę jej złośliwą naturę i wydatki, jakie przez nią ponosimy. A po drugie, książka ta jest w pewien sposób związana z inną, znacznie starszą księgą...

WIEŻA I AKCELERATOR

Mieszkańcy całej ziemi mieli jedną mowę, czyli jednakowe słowa. A gdy wędrowali ze wschodu, napotkali równinę w kraju Szinear i tam zamieszkali.

I mówili jeden do drugiego: Chodźcie, wyrabiajmy cegłę i wypalajmy ją w ogniu. A gdy już mieli cegłę zamiast kamieni i smołę zamiast zaprawy murarskiej, rzekli: Chodźcie, zbudujemy sobie miasto i wieżę, której wierzchołek będzie sięgał nieba, i w ten sposób uczynimy sobie znak, abyśmy się nie rozproszyli po całej ziemi.

A Pan zstąpił z nieba, by zobaczyć to miasto i wieżę, które budowali ludzie, i rzekł: Są oni jednym ludem i wszyscy mają jedną mowę, i to jest przyczyną, że zaczęli budować. A zatem w przyszłości nic nie będzie dla nich niemożliwe, cokolwiek zamierzą uczynić. Zejdźmy więc i pomieszajmy ich język, aby jeden nie rozumiał drugiego!

W ten sposób Pan rozproszył ich stamtąd po całej powierzchni ziemi, i tak nie dokończyli budowy tego miasta. Dlatego to nazwano je Babel, tam bowiem Pan pomieszał mowę mieszkańców całej ziemi5.

Rdz. 11,1-9

Niegdyś, wiele mileniów temu, na długo zanim zapisano te słowa, przyroda miała jedną mowę i materia wszędzie była jednakowa – piękna w swej eleganckiej, rozżarzonej symetrii. Jednak w ciągu eonów przekształciła się i rozproszyła we Wszechświecie pod wieloma postaciami, konfundując tych, którzy żyją na zwyczajnej planecie krążącej wokół przeciętnej gwiazdy.

W dziejach ludzkich poszukiwań racjonalnego wytłumaczenia świata zdarzały się okresy obfitujące w przełomy, gdy postęp był szybki, a uczeni pełni optymizmu. Kiedy indziej panował zupełny zamęt. Często okresy największego pomieszania, kryzysu intelektualnego i całkowitego braku zrozumienia stanowiły zwiastuny nadchodzących przełomów, niosących oświecenie.

Przez ostatnich parę dekad panował wśród fizyków cząstek elementarnych taki dziwny stan zamętu intelektualnego, że porównanie do wieży Babel wydaje się być jak najbardziej na miejscu. Używając wielkich akceleratorów, fizycy poddawali drobiazgowej analizie cząstki i procesy zachodzące we Wszechświecie. W ostatnich latach do poszukiwań dołączyli astronomowie i astrofizycy, spoglądający w ogromne teleskopy i przeszukujący niebiosa, by znaleźć szczątkowe iskry i popioły pozostałe z eksplozji, która, wedle ich przekonania, wydarzyła się 15 miliardów lat temu i zwana jest Wielkim Wybuchem.

Obie te grupy naukowców dążą do osiągnięcia prostego, spójnego, wszechobejmującego modelu, który pozwoliłby na wyjaśnienie wszystkiego: struktury materii i energii, zachowania oddziaływań w warunkach tak różnych, jak najwcześniejsze chwile młodego Wszechświata, z panującymi wtedy przeogromnymi temperaturami i gęstością, i stosunkowo zimnego i pustego świata, jaki znamy dzisiaj. Podążaliśmy tym tropem gładko, może zbyt gładko, gdy natknęliśmy się na osobliwość – najwyraźniej nieprzyjazną siłę działającą we Wszechświecie. Na coś, co wydaje się wyzierać z przestrzeni, w której osadzone są nasze planety, gwiazdy i galaktyki. Jest to coś, czego nie potrafimy jeszcze zidentyfikować i co, można powiedzieć, znalazło się tu, by nas wypróbować i pomieszać nam szyki. Czy zbliżyliśmy się do czegoś nadmiernie? Czy jest gdzieś ukryty jakiś nerwowy Czarnoksiężnik z Krainy Oz, który niechlujnie fałszuje dane archeologiczne?

Chodzi o to, czy fizycy się poddadzą, czy też, w przeciwieństwie do nieszczęsnych Babilończyków, będziemy kontynuowali budowę wieży i, jak to ujął Einstein, „poznamy umysł Boga”.

Cały Wszechświat miał wiele rodzajów mowy, czyli różne słowa. A gdy wędrowali ze wschodu, napotkali równinę w okolicy Waxahachie i tam zamieszkali. I mówili jeden do drugiego: „Chodźcie, zbudujemy sobie wielki akcelerator, w którym zderzenia mogą sięgać daleko w przeszłość, aż do początku czasu”. I mieli nadprzewodzące magnesy do zakrzywiania i protony do rozbijania.

A Pani zstąpiła z nieba, by zobaczyć ten akcelerator, który zbudowali ludzie. I rzekła: „Oto ludzie rozplątują to, com zaplątała”. I Pani westchnęła i rzekła: „Zejdźmy więc i dajmy im Boską Cząstkę, aby mogli zobaczyć, jak piękny jest Wszechświat, który uczyniłam”.

Zupełnie Nowy Testament 11,1-7

CIĄG DALSZY DOSTĘPNY W PEŁNEJ, PŁATNEJ WERSJI

PEŁNY SPIS TREŚCI:

Dramatis personae

Rozdział 1. Niewidoczna piłka nożna

JAK DZIAŁA WSZECHŚWIAT?

POCZĄTKI NAUKI

POCHWYCENIE LEONA

BIBLIOTEKA MATERII

KWARKI I PAPIEŻ

NIEWIDZIALNA PIŁKA

PIRAMIDA NAUK

EKSPERYMENTATORZY I TEORETYCY: FARMERZY, ŚWINIE I TRUFLE

CI, KTÓRZY NIE DOSYPIALI

RATUNKU, MATEMATYKA!

WSZECHŚWIAT ISTNIEJE DOPIERO OD 10 DO POTĘGI 18 SEKUND

OPOWIEŚĆ O DWÓCH CZĄSTKACH I OSTATECZNEJ KOSZULCE

TAJEMNICZY PAN HIGGS

WIEŻA I AKCELERATOR

Rozdział 2. Pierwszy fizyk cząstek

PÓŹNĄ NOCĄ Z LEDERMANEM

PATRZĄC W KALEJDOSKOP

Interludium A. Opowieść o dwóch miastach

Rozdział 3. Poszukiwania atomu: mechanicy

GALILEUSZ, ZSA ZSA GABOR I JA

KULE I POCHYLNIE

PIÓRKO I GROSIK

PRAWDA O WIEŻY

ATOMY GALILEUSZA

AKCELERATORY I TELESKOPY

CARL SAGAN XVII WIEKU

CZŁOWIEK BEZ NOSA

MISTYK WYJAŚNIA

PAPIEŻ DO GALILEUSZA: SPADAJ

SŁONECZNA GĄBKA

ZARZĄDCA MENNICY

SIŁA NIECH BĘDZIE Z NAMI

ULUBIONE F ISAACA

CO NAS PCHA DO GÓRY

TAJEMNICA DWÓCH MAS

CZŁOWIEK Z DWOMA UMLAUTAMI

WIELKI TWÓRCA SYNTEZ

KŁOPOT Z GRAWITACJĄ

ISAAC I JEGO ATOMY

DZIWNE RZECZY

DALMATYŃSKI PROROK

Rozdział 4. Dalsze poszukiwania atomu: chemicy i elektrycy

CZŁOWIEK, KTÓRY ODKRYŁ 20 CENTYMETRÓW NICZEGO

ŚCISKANIE GAZU

ZABAWA W NAZWY

PELIKAN I BALON

Z POWROTEM DO ATOMU

PASJANS Z PIERWIASTKAMI

ELEKTRYCZNE ŻABY

TAJEMNICA WIĄZANIA CHEMICZNEGO: ZNOWU CZĄSTKI

SZOK W KOPENHADZE

ZNOWU DÉJÀ VU

ŚWIECE, SILNIKI, DYNAMA

NIECH POLE BĘDZIE Z TOBĄ

Z PRĘDKOŚCIĄ ŚWIATŁA

HERTZ NA RATUNEK

MAGNES I KULKA

PORA DO DOMU?

PIERWSZA PRAWDZIWA CZĄSTKA

Rozdział 5. Nagi atom

GDY TĘCZA JUŻ NIE WYSTARCZA

DOWÓD RZECZOWY NR 1: KATASTROFA W ULTRAFIOLECIE

DOWÓD RZECZOWY NR 2: ZJAWISKO FOTOELEKTRYCZNE

DOWÓD RZECZOWY NR 3: KTO LUBI CIASTO Z RODZYNKAMI?

ZMAGANIA

BOHR: NA SKRZYDŁACH MOTYLA

DWIE MINUTY DLA ENERGII

NO WIĘC?

UCHYLENIE RĄBKA TAJEMNICY

CZŁOWIEK, KTÓRY NIE ZNAŁ SIĘ NA BATERIACH

FALE MATERII I DAMA W WILLI

FALA PRAWDOPODOBIEŃSTWA

CO TO ZNACZY, CZYLI FIZYKA KROJU I SZYCIA

NIESPODZIANKA NA GÓRSKIM SZCZYCIE

NIEOZNACZONOŚĆ I INNE RZECZY

UTRAPIENIE Z PODWÓJNĄ SZCZELINĄ

NEWTON KONTRA SCHRÖDINGER

TRZY RZECZY, KTÓRE TRZEBA ZAPAMIĘTAĆ O MECHANICE KWANTOWEJ

Interludium B. Tańczący mistrzowie wiedzy tajemnej

POMRUKI REWOLUCJI

Rozdział 6. Akceleratory: one rozkwaszają atomy, nieprawdaż?

CZY BOGINI STWARZA TO WSZYSTKO W MIARĘ POSTĘPU NASZYCH BADAŃ?

DLACZEGO AŻ TYLE ENERGII?

SZCZELINA

UMASYWNIACZ

KATEDRA MONETA, CZYLI TRZYNAŚCIE SPOSOBÓW WIDZENIA PROTONU

NOWA MATERIA: KILKA PRZEPISÓW

CZĄSTKI Z PRÓŻNI

WYŚCIG

WPŁYWOWA OSOBISTOŚĆ Z KALIFORNII

WIELKA NAUKA I GENIUS LOCI KALIFORNII

SYNCHROTRON: TYLE OKRĄŻEŃ, ILE CHCESZ

IKE I PIONY

DAMY BEPPA

PIERWSZA WIĄZKA ZEWNĘTRZNA: PRZYJMUJEMY ZAKŁADY

DYGRESJA W STRONĘ NAUK SPOŁECZNYCH: POCHODZENIE WIELKIEJ NAUKI

Z POWROTEM DO MASZYN: TRZY PRZEŁOMY TECHNOLOGICZNE

CZY WIĘKSZE JEST LEPSZE?

CZWARTY PRZEŁOM: NADPRZEWODNICTWO

KOWBOJ DYREKTOREM LABORATORIUM

DZIEŃ Z ŻYCIA PROTONU

DECYZJE, DECYZJE: PROTONY CZY ELEKTRONY

ZDERZENIE CZOŁOWE CZY TARCZA?

WYTWARZANIE ANTYMATERII

ZAGLĄDANIE DO CZARNEJ SKRZYNKI: DETEKTORY

KŁOPOTY Z PĘCHERZYKAMI

CZEGO SIĘ DOWIEDZIELIŚMY: AKCELERATORY I POSTĘP W FIZYCE

TRZY FINAŁY: WEHIKUŁ CZASU, KATEDRY I AKCELERATOR NA ORBICIE

Interludium C. Jak w ciągu weekendu złamaliśmy parzystość i… odkryliśmy Boga

EKSPERYMENT W LUSTRZE

CAFÉ SZANGHAJ

EKSPERYMENT

Rozdział 7. A-tom!

ODDZIAŁYWANIE ELEKTRYCZNE

CZĄSTKI WIRTUALNE

OSOBISTY MAGNETYZM MIONU

ODDZIAŁYWANIE SŁABE

LEKKO ZŁAMANA SYMETRIA, CZYLI SKĄD SIĘ WZIĘLIŚMY

POLOWANIE NA MAŁE NEUTRALNE

WYBUCHOWE RÓWNANIE

ZBRODNICZA SPÓŁKA I DWUNEUTRINOWY EKSPERYMENT

BRAZYLIJSKIE ZADŁUŻENIE, KRÓTKIE SPÓDNICZKI I VICE VERSA

ODDZIAŁYWANIE SILNE

WOŁANIA KWARKÓW

ZASADY ZACHOWANIA

NIOBOWE JAJA

„RUTHERFORD” WRACA

REWOLUCJA LISTOPADOWA

POSZUKIWANIE WYBRZUSZEŃ

SKĄD TO CAŁE ZAMIESZANIE (I TROCHĘ KWAŚNYCH WINOGRON)

NAGI POWAB

TRZECIA GENERACJA

JESZCZE O ODDZIAŁYWANIU SŁABYM

PORA NA PRZYSPIESZENIE ODDECHU

ZNALEZIENIE ZET ZERO

JESZCZE O ODDZIAŁYWANIU SILNYM: GLUONY

KONIEC DROGI

Rozdział 8. I wreszcie Boska Cząstka

WYJĄTKI Z AGONII MODELU STANDARDOWEGO

UKRYTA PROSTOTA: UPOJENIE MODELEM STANDARDOWYM

MODEL STANDARDOWY A.D. 1980

CHIMERA UNIFIKACJI

CECHOWANIE

WYTROPIĆ W

CARLO I GORYL

PRZEJAŻDŻKA NA NUMERZE 29

TRIUMF

ZWIEŃCZENIE MODELU STANDARDOWEGO

O CO TU CHODZI?

POSZUKIWANIA KWARKA T

MODEL STANDARDOWY TO CHWIEJNA PODSTAWA

I WRESZCIE...

KRYZYS MASOWY

KRYZYS UNITARNOŚCI?

KRYZYS HIGGSA

DYGRESJA O NICZYM

ZNALEŹĆ HIGGSA

PUSTYNIATRON

PREZYDENT REAGAN I SUPERAKCELERATOR: PRAWDZIWA HISTORIA

Rozdział 9. Mikroprzestrzeń, makroprzestrzeń i czas przed początkiem czasu

MIKROPRZESTRZEŃ/MAKROPRZESTRZEŃ

AKCELERATOR Z NIEOGRANICZONYM BUDŻETEM

TEORIE TAKIE I SIAKIE

GUT-Y

SUSY

SUPERSTRUNY

PŁASKOŚĆ I CIEMNA MATERIA

CHARLTON, GOLDA I GUTH

INFLACJA I CZĄSTKA SKALARNA

PRZED POCZĄTKIEM CZASU

POWRÓT GREKA

DO WIDZENIA

KONIEC FIZYKI?

OBOWIĄZKOWE BOSKIE ZAKOŃCZENIE

Podziękowania

Uwagi na temat historii i źródeł

Literatura uzupełniająca w języku polskim

1 W amerykańskich szkołach stosuje się literową skalę ocen od A do F (przyp. tłum.).

2 Budowa SSC została wstrzymana przez Kongres Stanów Zjednoczonych pod koniec 1993 roku (przyp. red.).

3 Wyd. pol.: T. Veblen, Teoria klasy próżniaczej, przeł. J. Frentzel-Zagórska, Muza, Warszawa 1998 (przyp. red).

4 Część nowojorskiej dzielnicy Bronx (przyp. tłum.).

5Biblia Tysiąclecia, Poznań 1980.